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Chapter 1

From Visualizations to 

Data Visual-Animations

1.1 Introduction

The primary purpose of Data Visualization is the presentation of data in an

illuminating form for a target audience. The target audience can range from

application specialists such as scientific modelers, to people who can be

expected to have at least a priori familiarity with the data, to “the public” at large.

Traditionally, the target audience has been the modeler, so that the target end

products of data visualizations have been individual images or simple time

sequences presenting information in a manner assumed to be familiar to an

application expert. Effectively presenting information to a less knowledgeable

target audience requires a paradigm shift, oriented toward the production of data

displays that "move" the target audience from a base level of knowledge to a
1
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significantly enhanced understanding of the phenomena being modeled. The 

result, referred to as data visual-animation, typically takes the form of digital 

movies distributed on CDs or via Web sites, playable on PC's and workstations, 

or distributed in comparable non-digital form (e.g., VHS movies for playback via 

standard VCR).

The focus of this project is the design, identification and implementation of a set 

of tools and methods necessary to produce data visual-animations. A pipeline of 

processing components is described, and it is illustrated how they can be used in 

various natural resource analysis applications. The roles of the visualization 

specialist and the scientist/application specialist are identified, both in using the 

tools and providing feedback on the results produced with the tools.

Determine objectives, 
alternatives, contraints

Evaluate alternatives, 
identify, resolve risks

Risk Analysis

Prototypes

Design validation 
and verification

Integration test,

Implementation

Develop, verify next-level 
product

Plan Next Phases

Figure 1.1 Spiral Approach

Boehm's spiral approach to software development [Boehm88] provides a good
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model for describing this project. As illustrated in Figure 1.1, this model is itself 

characterized by a visual analogy: a spiral through design space with quadrants 

representing activities. The activities associated with the first quadrant and the 

starting position of the spiral are the determination of the project objectives, 

alternatives and constraints. In the next quadrant, alternatives are evaluated 

and risks are identified and resolved through prototyping. In the third quadrant, 

the next level of the product is developed and verified according to the previous 

quadrant’s risk assessment and resolutions. Planning the next phase of the 

spiral process happens in the fourth quadrant. Each spiral pass carries the 

project through determination of the objectives, evaluation of alternatives through 

prototyping, developing the next-product and planning the next phase.

In applying a spiral model to the development of the data visual-animation 

pipeline, the initial iteration identifies one possible solution to the problem, in 

terms of a set of key required components that establish a primitive pipeline from 

input data to end product. The evaluation following Spiral One reveals which 

components are "standard" in a typical visualization environment, and which 

need to be developed specifically to support visual-animations. Each 

subsequent iteration improves on one or more aspects of the initial pipeline by 

identifying, specifying and implementing tools that smooth the transition from 

input to target outputs. As with any design, it is also possible that complete 

sections of the initial pipeline will be rerouted in order to adapt to the dynamic 

environment of changing application goals and evolving hardware and software 

capabilities to achieve the desired goal of a convincing and informative visual- 

animation. Thus, our description of each spiral pass focuses on the nature of the 

application environment and constraints, the identification and development of 

missing components, their combination with existing components to produce 

prototype visual-animations, and continuing refinement.
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The spiral method is a convenient way to describe a natural discovery method, in 

which there are new aspects of a complex system uncovered gradually as the 

system is more completely understood. In fact, some of the information and the 

problems exist the entire time, but are only fully understood when the 

development has progressed significantly toward the target. For example, we 

may be unaware that a “false coloring” scheme used in a particular image 

doesn’t work until we have a smooth camera path and a coherent collection of 

images collected from that path. At that point, when we move from one image to 

another we notice that the colors appear incongruent because they obscure the 

desired effect. To put it another way, we discover the importance of having a 

better coloring scheme, and we need to find such a scheme. This is indicative of 

the spiral model’s description of multiple passes through the same design space: 

we realize at spiral iteration N that we need to solve the coloring problem, in the 

context of our greatly improved understanding of the role color plays in the 

application at this point in development.

The project focuses on an application framework involving the particular 

visualization problems related to depicting large datasets whose values are tied 

to large spatial regions which are referred to as landscapes. The landscapes are 

complex enough that a single viewpoint is not enough for complete 

understanding; they must be probed and explored. For this set of applications I 

first identify the required visualization components, then classify them into those 

tools, operations, and qualities which are unique to this type of application and 

those which are common to a wider class of visual-animations. For example, an 

important requirement is a "programmable moving camera," i.e. an image 

capturing device which can be programmed by the visualization designer to 

move smoothly along a path through, by, or above the data, capturing imagery at
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a desired resolution. This type of tool is an example of a facility useful in both 

landscape-based visualizations and a wide range of other applications.

This project relies on both existing visualization software and extra tools. The 

project uses IBM's Data Explorer (DX) [IBM95] as its basic visualization 

software running on an IBM RS/6000 workstation. DX is widely used in 

research, instruction, and commercial environments, and is available on a wide 

variety of computing platforms. DX also has an application programming 

interface and extensive programming libraries which allow an application expert 

to develop customized visualization components as modules which can be easily 

added to the general visualization environment. In addition to the tools provided 

in and added to the DX environment, a number of other stand-alone tools have 

been used and developed to assist in the creation, collection, compression, 

conversion, and/or maintenance of large sequences of individual images 

representing "frames" in a data visual-animation.

1.2 Visualizations Presentation vs. Research

The earliest forms of visualizations were graphs, charts and plots. They evolved 

into many forms with different purposes which can be classified into two groups; 

visualizations for the scientific modeler evolved to enhance their work and 

productivity through real time data depiction and a set of interactive tools; and 

visualizations for use in presentations evolved in order to allow the 

communication of complex results to a larger, less specialized group of people.
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1.2.1 Scientific Visualizations

Visualizations were originally developed to enhance the productivity of the 

modeler, through real time, visual depiction of complex relationships in large 

datasets. The evolution of the computer made it very easy for scientists to 

create far more data than they could possibly decipher. The modeler had no 

choice but to search through reams of output or attempt to mentally “visualize” 

complex systems, relationships and results. When computer graphics display 

capabilities started to become readily available, simple graphs, histograms and 

data plots allowed for the results to be summarized in a much easier to use form. 

As computers became more powerful, models became more and more complex, 

and the data produced became more and more complex as well. Fortunately, 

the hardware evolution also extended to dramatically improved graphics and 

display capabilities, which enabled the new paradigm of pseudo-animations of 

3-D spaces, allowing complex datasets to be displayed in context with the 

underlying physical landscapes.

Most commonly, the goal in modern scientific visualizations is to show the 

modeler stages of their model while it executes, i.e. by depicting the data as it is 

produced by the model. This sort of real-time feed back helps the modeler 

interact with the model like never before. The effective use of this technology is 

the focus of the project described here.
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1.2.2 Presentation Visualizations

Visualizations created with a broader audience in mind than just modelers, i.e. 

for presentation, were inspired by early efforts in scientific visualization combined 

with various hardware and software advances. Presentation visualizations are 

designed to communicate both specific ideas or results, and to set the specific 

context in which the ideas and results should be interpreted. There is a 

distinction between these goals and simple “modeler support.” Visualizations 

created by and for a modeler might display only a few critical attributes in a way 

to help a specialist in that field understand what is happening. In contrast, a 

presentation visualization must provide a much “broader” display, to acquaint a 

less-expert viewer with the phenomena under study.

For example, if a specialist is creating a presentation visualization for model 

results from a certain water basin, the ability to give some context for the model 

by showing images of the region in question or flying them over the region can 

help in the general understand for the audience. If the audience can be 

assumed to be familiar with the region of interest, the complete context does not 

need to be set and the “background” information can be minimized. However, 

for a more general audience, more extensive context setting and “background” 

information is required, and it’s not very practical to take everyone up in a plane 

and fly them over the region of interest. A presentation style visualization can 

bring the region of interest to the audience quickly and effectively. This 

technique has evolved to become an inherent part of data presentation and 

dissemination in practically all applications.
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Chapter 2

Original Pass (paradigm shift)

2.1 Background and Motivation

The origin of this project is the need to support data analysis, modeling, 

presentation, and results dissemination in a petroleum reservoir characterization 

project. Project scientists include field geologists with “field observed” data, 

geophysicists with 3-D seismic datasets, and petroleum engineers with various 

forms of simulation modeling datasets. Initial goals include both modeling 

support and presentation/dissemination of data from all parts of the project.

Initial work on Spiral One focuses on providing petroleum engineer Dr. Tarek 

Ahmed, of Montana Tech of the University of Montana, and geologist Dr. Karen 

Porter, of the Montana Bureau of Mines and Geology, tools that combined their 

model results to allow further study and presentation. The region selected for 

their characterization project was the Rabbit Hills oil field near the town of 

Chinook in north-central Montana.

2.2 Visualization Pipeline Components

2.2.1 Base Spatial Data Collection

The first goal is to create a “virtual landscape” based on actual data. As 

illustrated in the details in Figure 2.1, creating the original visualization involves 

gathering the appropriate data, figuring out how to import, color, render and
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display it. The DEM (Digital Elevation Model) of the Rabbit Hills area is used as 

a base input layer to DX. The wells are positioned on the landscape from their 

rectangular survey system coordinates. The well positions must be translated 

into the same scale and coordinate system of the DEM with the use of a very 

specialized converter. Note that the “landscape” at this point transformed from a 

surface depiction (often called “2.5-D”) to a full 3-D model in which well depth is 

an important attribute.

import
template

DXW ell
Locations

DEM

general
array

importer
autoglyphquadrant

converter

import rubbersheet

Data
Prompter

image image

Figure 2.1 Base Input Data Importing and Verification

In combining the base DEM dataset with another dataset, such as well locations, 

the importance of coordinate systems and transformations, i.e. projections, 

cannot be understated. The visualization expert and scientist must specify the 

coordinate system, scale, and resolution of elements very accurately in order to 

standardize the spatial correspondence (cartographic fidelity) of the resulting 

visualization. However, because of the different standards used by 

geographers, surveys, and other data contributors, datasets generally need to be 

converted and coregistered to a single standard. Once the two base datasets 

are combined, placing wells accurately on the surface, initial images can be 

rendered for inspection by Dr. Porter. When she is satisfied that the well 

locations have been accurately translated the process continues.
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The quadrant converter [Holbrook93] is a facility required in this application to 

take the location of the Range-Township corner location in the same reference 

system as the DEM layer, the table of well positions in rectangular survey 

coordinates, then combine these inputs and produce the list of well positions in 

the same reference system as the DEM. Generally, the user must first convert 

the position of the lower left corner of the Range-Township quad, the width and 

the height into the same coordinate system as the DEM. The goal for the 

quadrant converter is to input a series of well positions in the rectangular 

coordinate system and produce the positions of the wells in the same coordinate 

system as the DEM, and in a form which can easily be imported into the DX 

environment by the general array importer. The nature of the rectangular 

coordinate systems leaves the location defined within the extent of the smallest 

region. The equation in Figure 2.2 shows how the wells were placed at the 

center of the final rectangular region with the final term for both x and y.

Range - Township Location (x0, y 0), Width (wx, wy),

Rectangular Surveys S [ k elements] = {YX, . . . ,YX} ,  Y e { N , S } ,  X  e{JV,E}  

and Sx = { X , . . . , X } , S y ={Y, . . . ,Y}

* = *0 + ^ (2 L - (S xW = £) + 4 t)

y  = y 0 + ^ ( ^ - ( s y[(\ = N ) + ± . )
i=\..k̂  L

Figure 2.2 Quadrant Converter Equations

In the example illustrated in Figure 2.3, the well’s position in rectangular survey 

coordinates is [NW NE SE NW SE].
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(Xo.yo)^

Figure 2.3 Range-Township Example

If the location of the corner of the Range-Township is (1500, 2000) and the width 

and height of the region is 2000, the location is:

x = 1500 + 2000*(0.0+.25+.125+0.0+.03125+.015625) = 

1500 + 2000*(.4218175) = 2343.635 

y = 2000 + 2000*(.5+.25+0.0+. 0625+0.0+. 015625) = 

2000 + 2000*(.828125) = 3656.25

The quadrant converter’s limited scope makes it essential for this part of the 

project, but once the locations are figured out, it isn’t used again until the location 

of a well is modified following a field verification. Specialized parsers and 

converters like the quadrant converter are needed regularly to import data from 

many sources. Model data is generally formatted for human consumption which 

almost guarantees that the computer will have difficulty dealing with it.
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Once the well positions are ready for import, the next step is to convert the DEM 

to a DX data format. For this, the conv [Thompson95] utility created by Dick 

Thompson and David Thompson at the University of Montana is used. This 

spatial dataset utility allows for the conversion of many formats, including, DEM, 

DLG, and various GIS related formats.

The next step is to import base data into the visualization environment, DX. The 

DX programming environment is a visual-programming environment where the 

user has an application canvas and a tools palette. Operations are represented 

by rectangles with input and output tabs, referred to as modules. The data flow 

between modules is represented by line connections between operations.

The Data Prompter [IBM95] is a facility which is included in the standard 

distribution of DX to allow a user to define import templates for regularly 

formatted data files. These templates are used by the general array importer 

to import the data into the visualization programs. As illustrated in Figure 2.1, 

the specific goal is to import the base data, transform it appropriately, and render 

it to present an appropriate image.

Once a general array importer description is built, the converted DEM data is 

acquired via the Import module. The landscape surface is created from a 

RubberSheet of the DEM data colored in a false color brown representing the 

grasslands. The RubberSheet module creates a surface over a data landscape 

with elevation controlled by the data value at each point. The position of the 

wells is initially shown with the AutoGlyph module which creates a sphere for a 

simple scalar data value in a 3-D landscape. For added realism, glyphs are 

created to resemble oil derricks. They are placed on top of the landscape at the 

position of the wells.
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Once the region of interest is created and the glyphs are placed on the surface, 

still images are created for inspection. In addition, the interactive view control 

mode of DX is used to investigate the virtual landscape. Through Dr. Porter’s 

input, it became immediately evident that moving over and around the surface 

would be a great benefit to reveal the location of all the wells and the other 

characteristics of the landscape.

2.2.2 Camera Paths

Locations

quadrantpencil/paper
sketch

method

conv converter

Prompter

general import
template

Sequencer Import
array

importer

► Compute

Camera

Figure 2.4 Single and Multi-Segment Camera Paths

2.2.2.1 Single Segment

The first approach to depicting motion through a landscape was a very primitive 

flight path. The Camera module operates given a set of values including; 

camera position (“from”), a position to look towards (“to”), viewing angle, 

resolution and aspect. The position of the camera can be changed in a series of 

steps along a linear path that passes parallel to one of the sides of the Rabbit
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Hills Quadrant. In all cases, the position of the “to” point is set to the center of 

the region. The DX environment provides a set of tools called Interactors for 

controlling variables. Interactors allow the user to interact with the visualization 

applications through dialog boxes and a special device called a Sequencer. The 

Sequencer increments a value and has controls like a VCR or CD-Player. 

(Figure 2.5)

Display: /merlin/DX/blackQil/pfmograms/surface.flight,net

File Execute Windows Connection Options

equence Control

Figure 2.5 Sequencer and Surface

2.2.2.2 Multi-segment Flight Path

To create a more ambitious path, a series of line segments can be linked 

together to create a flight path around the entire region of interest. To construct 

such a path, the region of interest is sketched on paper and the path drawn in 

relation to it. The values for the positions of the control points are estimated
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using the position and size of the Range-Township. Compute modules can be 

used to determine which of the segments the camera is currently traversing 

according to the equations of Figure 2.6. The Compute module applies a user 

specified mathematical expression to it’s input and passes the returned value as 

output. The flight path spirals around and into the region of interest and “flies” 

down near the surface between a few of the oil derrick glyphs. The flight comes 

to an end near the middle of the region as if the plane has landed. The apparent 

motion is smooth while the camera travels along each linear segment, but the 

images experience a large change when crossing from one segment to another.

If the line segments are almost parallel, the change at the control point is less

dramatic.

Inputs: list {P0, P2,...Pn} [n+1 elements], co [steps/segment], p [current step]

Output: current Position Pstep

Let 5 = INT( p /c o ) {Current segment RANGE = 0...n-1}

Let k = p - 8 * co {Current position on segment RANGE = 0... co-1}

X p = (X 5+1-X 5)/co * k  + Xg 

Y p =  (Y 5+1-Y 6) / c o * k  +  Y 5 

Z p = (Z 5+1-Z 5)/co * k  + Z 5

Figure 2.6 Multi-Segment Determination Equations
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2.2.2.3 FlyingCamera Macro

The size of network which makes the camera move along the multiple line 

segments makes it impractical to use in other visualization programs. DX’s 

macro facility is the ideal tool to package the flying camera into a more 

universally useful object. The FlyingCamera [Holbrook94] macro encapsulates 

the large network and lets the user select a list of control points and the number 

of points the camera should visit between control points. The macro is used 

inside a visual network in Figure 2.7.

mm 
j a j

,;L File Edit Execute 

Categories:

I Annotation 
pXLlnk 

| Debugging 
i Flow Control 
| i lm p o r t  and Export 
I Interactor 
i Interface Control
Macros

| Realization 
| Rendering 
! Special 
j Structuring

Macros Tools:

ColorEnhance 
i ColorGlyph 
I DataSelect
a n

i MultiMark 
I VectorStatistics 

newSystem
newWriteConvertimage
newWritelmage
rconvSystem

Windows OptionsConnection

Figure 2.7 FlyingCamera Macro in Visualization Program
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Well
Locations

DEM

pencil/paper
sketch

method

quadrant
converter

Data
Promterpath

points

general
array

importer

import
template

Sequencer Import

Flying
Cam era
Macro

Render

Direct
UMS

Image

Write
Im ageDX

Frames

tifftoppm

param eter
file

m peg_encode ppmtorgb

rgbtoyuv
mpeg

IBM UMS

VHS

Figure 2.8 The First Movies

2.2.3 The First Movies

2.2.3.1 DX Image Caching

When the Sequencer is used with an Image or Display module, a series of 

images can be rendered, cached and replayed without re-rendering them. The
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available memory and CPU have a large effect on the performance of the 

original rendering and subsequent caching. If the number of frames in the series 

is small enough to completely load into memory, the image caching feature is 

effective, but the initial rendering pass must be done at least once in any case.

The limit on the number of frames and the speed of the image refresh are the 

next things needing improvement. The dataset is already small and the region of 

interest cannot be reduced to help speed the image refresh rate. The size of the 

image window cannot be reduced without losing the amount of information and 

viewing area brought to the audience. This evaluation suggests the need to find 

some way to create a self-contained “movie” of the frames.

2.2.3.2 MPEG Movies

The MPEG is a standard movie format which can be viewed on UNIX 

workstation’s, Windows PC’s and MAC’S. The basic scheme of MPEG movie 

compression is to predict motion from frame to frame in the temporal direction. 

In other words, the compression scheme looks for a close match to a block of 

pixels in the current frame with that of a future frame, and moves it towards the 

position in the future frame. Each of the input frames becomes a control frame. 

A user-controlled quantity of interpolated frames are generated between the 

control frames to move the similar blocks to their next position. The MPEG 

compression scheme is a lossy process where the integrity of the interpolated 

frames is not guaranteed.

The mpeg_encode [Gong94] utility transforms a series of images into an mpeg 

movie. The images rendered in DX and saved using the ImageWrite module 

are created in TIFF image format. The mpeg_encode utility requires a 

parameter file identifying the input frames and compression method, and the
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ppm (portable pixmap) images as input. The PBMPLUS (Extended Portable 

Bitmaps Plus) Toolkit [Consortium91] was discovered through Internet at the 

same location as mpeg_encode. The PBMPLUS Toolkit contains an 

extensive set of image converters for most image formats, tiftoppm, one of the 

tools in the set, is used to convert the DX created TIFF’s to ppm images.

The resulting movie is a great improvement, in the sense of smoother motion 

and increased limit on the number of frames allowed. However, the image 

refresh rate is still affected by image size and machine performance. The 

amount of loss between control frames can be dramatic depending on the image 

content, e.g. the grid lines surrounding the Rabbit Hills landscape are not 

interpolated very well.

2.2.3.3 IBM UMS card

A “beta” (pre-commercial) version of the UMS video card for the IBM RS6000 

provides the opportunity to experiment with direct output to a TV or VCR. The 

UMS card comes with a primitive library set of functions for passing images in 

memory through the card to an attached output display or capture device.

In the first method attempted, the series of images was converted from tiff to 

ppm to rgb to composit yuv frames for the UMS card using utilities from the 

PBMPLUS Toolkit. The entire sequence was loaded into memory and then 

passed frame by frame to the UMS card. The movie results were fast, but 

limited in length by the amount of memory available. There were also serious 

scanline problems and flashes at the start and stop.

In the second and final method with the UMS video card, a module was created 

which did the image translation and shipped the images directly to the UMS
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video card from within DX. Once again we were faced with the same problem 

that inspired us to go to MPEG movies. The entire sequence needed to be 

rendered and cached before the animation could happen.
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Chapter 3

Flight

3.1 The best way between two points isn’t always a straight line

Creating smooth motion in an animation depends highly on creating smooth 

motion for the "camera" in the visual-animation space. The Camera module 

works in conjunction with a Render module to create an image with a specific 

orientation, perspective, viewing angle, resolution, aspect etc. The orientation 

of the camera is specified by the “to”, “from” and “up” parameters. The “to” and 

“from” parameters are the locations to look towards and from respectively. The 

“up” parameter is the vector direction normal specifying the planar orientation of 

the image. Assigning a series of values to any of the camera parameters results 

in an image change, e.g. the “from” parameter changing on a path results in 

apparent motion.

The camera motion during the first spiral pass was controlled by a collection of 

linear segments with connecting control points. The resulting motion is realistic 

in only the case where there is only one linear segment.
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Figure 3.1 Segmented Linear Paths and their Slopes

The realism is lost as soon as there are two non-linear line segments because 

the first derivatives (slopes) of those segments are not the same. The viewpoint 

of the camera changes dramatically when leaving the end of one segment and 

beginning another. If one considers the two dimensional example shown in 

Figure 3.1 the slope is XQ while traversing from P0 to P., and is X, from P1 to P2. 

The slope transition between the segments is AX = \x^ - XQ I. AX is a finite and 

results in a perceivable change.

The goal of this spiral pass is to remove the perceivable changes between 

frames. If the slopes match at the control points, the camera view will not 

change when crossing control points. In mathematical terms, the first derivatives 

need to be matched to achieve continuity along the path resulting in a smooth 

"flight". That is, a curve needs to be fit to the control points. With a curve, the 

slope changes constantly with a very small AX as illustrated in Figure 3.2.
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p«

Figure 3.2 A Curve Matching Control Points

Controlling the path of the camera with the mathematical equation like that of a 

circle provides a smooth path. The data visual-animations are seamless and 

smooth but constrained to the path along the circle, eclipse or regularly defined 

curve. If we need to move off the circle, we need a more general solution.

3.2 Visualization Pipeline Components

3.2.1 General Path Interpolation - “Smoothing the Savage Beast”

We examine two methods for matching a curve to an ordered set of points. The 

set of points can be matched with a single curve encompassing the entire 

ordered set, or the derivatives can be matched at each control point. Each 

method results in a mathematical solution to the curve fitting problem.

Pathlnterpolation Module
Control
Points

^  Lagrange

><< 5 ^ Special Smooth
Curve

Equation

Method ^ UUUIU
^  Spline

Cubic

Special

Path
Steps

r  euu
^  Generation

Path

Figure 3.3 General Path Interpolation Overview
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3.2.1.1 Lagrange

The Lagrange method fits a single order k+1 curve to any set of k control points.

Control Points = {P q(xq, f o ) , P \ ( x \ , f  \ \ P i ( x i , f  P k ( x k , f k ) }

( x  -  Xo)(x -  X l)- • • ( x  -  X * -  l ) ( x  - X k )  _  A  ( x  -  Xj)
L i ( x )  — ---------------------------------------------------------------------------— I I

(X ; -  Xo )(X ; -  X l)- • • (Xi - X k  -  l ) (X i -  Xk) ^  (Xi -  Xj)
.1*1

pLagrange(x) —  f  oLo(x)  +  f  \ L \ { x )  4* f  2L l {x ) - \ - ‘ ‘  f k  -  1 Lk -  l ( x )  +  j k L k ^ x )

Figure 3.4 Lagrange Curve Interpolation Equations

Although the resulting curve passes through each control point correctly, it has 

extremely high minimums and maximums, as illustrated in Figure 3.5.

p 2 ( x 2 ,f2 )

Figure 3.5 Lagrange Curve

Since the camera is going to move along the curves in a finite number of steps, 

the amplitude peaks and troughs along the path should be minimized. To do 

this, extra control points P0-(x0,fo) and P3.(x3.,f3.) are added beyond both ends of 

the path in order to “pull” the curve tight as in Figure 3.6. This “Special 

Lagrange” curve is well behaved compared to that of the standard Lagrange 

interpolated curve.
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p 2 ( x 2 ,f 2 )

Figure 3.6 Special Lagrange Curve

3.2.1.2 Cubic Spline

The spline family of curves produces a piece-wise solution to a set of control 

points. Smooth transitions across the piece-wise curves are achieved by 

matching the slopes at each control point. The cubic spline is a 3rd order piece- 

wise solution to this problem.

These curves match two control points and the end derivatives. In addition, the 

derivatives at the control points are matched such that they minimize the 

magnitudes of the min's and max's. Solving the cubic spline involves solving a 

system of four equations with four independent variables for each piece-wise 

curve segment.
3 2atj + btt + ctj + d  = Xj 

a t j  + b t j  + c tM + d = xM

j a l 2 + 2 bt. + c = — —

3atM2+2btM +c = ^ ± -
1+2 h

Figure 3.7 Special Cubic Spline System of Equations

The first two equations of Figure 3.7 match the third order solution at the control 

points. The second two equations match the derivatives at those points.
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The slope of the curve at every control point is set to a value equal to that of the 

line segment connecting the points on either side of the control point in question. 

In Figure 3.8, the slope of the curve at P1 is set to the slope of the line 

connecting points P0 and P2. The slope of the curve at P2 is set to X2, the slope 

of the line connecting points P., and P3 . The special cases at the beginning and 

end of the curve are solved by setting the slope to a value halfway between the 

next two points in the case of the beginning and the previous two points in the 

case of the end of the curve. Setting the slope in this way minimizes the min’s 

and max’s of the curve connecting the points by forcing the curve to remain 

within the bounds of the control points.

Figure 3.8 Special Cubic Spline Min/Max Reduction 

3.2.2 The Pathlnterpolation Module

The Special Lagrange and Special Spline solutions can be extended to 3- 

dimensions through parameterization with time as the independent variable. 

This 3-D extended version has been integrated into the Data Explorer 

environment in the form of the new Pathlnterpolation [Holbrook94] module as 

shown in Figure 3.9. The user provides inputs that select which method to use, 

the list of control points, and the list of values that represent the number of steps 

between control points. In addition, the user can also specify a value which
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controls the distance between the end control points and the additional points 

used to “stretch” the curve tight.

Execute Windows Connection Options

Figure 3.9 Pathlnterpolation Module

Although the calculation of the flight path is a small operation compared to 

rendering the frames after the path is created, algorithm performance does affect 

the amount of time it takes to create and fine tune a flight path. Fortunately, the 

best behaved solution is also the most efficient. In a path with p control points 

and s steps between control points, the complexity of each of the two 

computations is:

Lagrange -> 9(ps2 + p2)

Spline -> 0(ps)

For the smoothest video there are as many frames as possible between control 

points, so we can assume s » p .

Lagrange -> 9(ps2)

Spline -> 0(ps)
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ProbeList ► VectorList

Steps — p  • IntegerList -► Pathlnterpolation

** ' « ...
Interactors

Method

collect image

Figure 3.10 Path Designation Overview

3.2.3 Defining The Path

Once the flight paths are created, the data visual-animations produced by DX 

are quite promising. However, creating the paths manually turns out to be a near 

impossible task. The pencil and paper sketch method for creating the flight path 

control points is not easily extended into a real 3-D object. For example, the 3-D 

Rabbit Hills model has above ground relief, subsurface strata, and well drops, 

making it hard to predict exactly what path(s) are the most interesting. There 

needs to be an interactive way to create the flight path. Previously, the flight 

path was sketched on paper, but it is not really tested until the entire series of 

images is rendered. There is no way of knowing if the flight path is going to 

“collide” with an object in the landscape without rendering the whole series. For 

example, the oil towers on the surface can create problems in the Rabbit Hills 

visual animation when the flight path comes in to meet the land.

Thus, the next required tool is one that supports interactive designation of the 

flight path. By adding control points through point and click, modifying the flight 

path with drag and drop actions, and displaying the flight path as a trajectory line 

in relation to the visualization object, all prior to image sequence rendering, the 

task of creating flight paths is greatly simplified.
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The generality of this problem does not lend itself to the creation of a self 

contained path-programming macro; it requires a collection of modules and a 

network framework that can be integrated into an existing spatial visualization. 

The critical parts of the “path programming” framework include the following: the 

Pathlnterpolation module; a Probelist module for on screen control point 

creation and modification; a Vectorlist interactor panel for display and 

manipulation of control point location values; the original visual object network or 

problem bounds; a Collect module to collect the flight path with the original 

object; and at least one Image module. An example of the “path programming” 

minimum network requirements is shown in Figure 3.11.

File Edit Execute Windows Connection Options Help

Categories:

Interactor
Interface Control
Macros
Realization
Rendering
Special
Structuring
Transformation
U of M

U of M Tools: 

i [ChangeProjection 

ScreenObject

1

J m  m

Figure 3.11 Path Programming
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The Probelist module works in connection with an Image display window, 

allowing the user to specify points in space by selecting a position with the 

mouse. The Vectorlist interactor takes the point list from the Probelist module 

and displays the numerical values of the positions of the points. The list of points 

and their positions can be altered using the interactor dialog box, enabling the 

user to edit and insert points which might have been missed. The output of the 

Vectorlist interactor is passed to the Pathlnterpolation module where the 

actual flight path is created. The secondary output of the Pathlnterpolation 

module is an object formed by connecting all the path points in order. This path 

object is then annotated using the ShowConnections module and displayed. 

The Pathlnterpolation module also assigns data values to each point according 

to whether or not it is an interpolated point or a control point. This allows each 

point to be displayed as a sphere with Glyph, then colored to show its location 

on the path and in relation to the original data visualization object. In Figure 

3.12, the control points are shown in respect to the interpolated path.

File Windows Connection Options

  i- ....

3.12 Path Manipulation
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Once a position is created, it is moveable with two degrees of freedom relative to 

the current perspective. For this reason, multiple image windows with different 

perspectives allow the user to move the control points in all three dimensions, 

i.e. from above and from the front as illustrated by Figures 3.13-3.14. Moving the 

control points around in the visualization space in this manner can still be a 

tedious job, but it is a vast improvement over the previous pencil/paper/sketch 

method.

Figure 3.13 Path View 1 Figure 3.14 Path View 2

3.2.4 Multiple Paths / Network

In this and the remaining example the resulting landscapes are very complex 3-D 

structures. In such a structure, we find that a flight path with the view looking 

straight ahead the entire time is often ineffectual at showing all the object’s 

interesting features. The best analogy for the solution is to consider a passenger



www.manaraa.com

32

who needs to look from side to side to get the best observations while flying 

through interesting scenery. This type of camera movement can be 

accomplished by creating another path for the “look to” variable of the camera. 

This multiple path method can also be extended to control the other variables, 

e.g., changing camera “width” and perspective for effects like smooth zooming in 

and out.

Sight
Path

Pathlnterpolation

Cam era
Flight
Path

Pathlnterpolation

Data ► Renderimport

DX
W ritelm age

T IFF  Frames P IC T Fram es Premimconvert QuickTim e

Video Vision 
Studio

VHS

Figure 3.15 Video Revolution Overview

3.2.5 Video

The evolution of the smooth camera path and path programming techniques 

opens the door for more complex and lengthy animations. The new animation 

complexity and the lossy characteristics of the MPEG movies created in the 

previous spiral suggests there is a need to find a better movie solution. 

QuickTime [Apple94] is a standard video movie environment originally 

developed by Apple for the MAC platform, but also now supported for Window’s 

PC’s as well. The QuickTime environment supports audio and video with 

multiple software and hardware based compression schemes. The acquisition of
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new hardware in the form of two PowerMac 8100’s with the VideoVision Studio 

[Radius95] adapters and a variety of new software provided the ability to create 

Quicktime movies. The VideoVision Studio adapter is a hardware 

compression based NTSC video input and output device allowing for the 

production and capture of broadcast quality video.

Premiere [Adobe94] is the movie editing and creation software used to 

assemble the frames and audio sequences. Premier comes standard with a 

large selection of software compression schemes. The Video Vision Studio 

hardware compression becomes a option when the adapter is present in the 

machine.

After all the frames are successfully created on the RS/6000 workstation, they 

are converted to the PICT image format by the mconvert [Thompson95] utility, 

mconvert is designed to take a desired image type and a list of target files as 

input and convert every image to the desired type using the convert utility from 

ImageMagick [Cristy92] set of imaging tools. These PICT images are moved 

to the PowerMac via the fetch [Dartmouth95] ftp utility and loaded into 

Premiere. The user selects the desired compression scheme and lets Premiere 

create the movie.
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Chapter 4

Looking at the World through 

AutoColored Glasses

4.1 More Realistic Landscapes

At this point, the motion of the camera flying around and through objects is very 

realistic. The camera has the ability to look from side to side or zoom into an 

area while moving over the landscape. The problem now is finding colors for the 

landscape which help set the context and do not distract the viewer.

DLG ►  conv

DEM

►  import ■ Render — ► W ritelm age

import ► Render

DX

real
images

HP ScanJet 
Plugin

stamp tool

layer

W ritelm age

dem
TIFF

clean
image

XV
hydro
Tirr

^  tifftoraw

layer layer

Photoshop

T
landscape

cover
image

^  drun

i
histo
T IFF

Figure 4.1 Landscape Layer Creation
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4.2 Visualization Pipeline

The introduction of the Glacier project uncovered a set of deficiencies that 

needed to be addressed during the next iteration. The purpose of the Glacier 

project was to set the context for a watershed study of the Lake MacDonald 

basin. The DEM was the first data layer acquired and it was imported and turned 

into a surface with RubberSheet. Unlike the Rabbit Hills area, Glacier National 

Park is one of the more geologically dynamic regions on the planet. Initially, the 

ColorMap module was used to color the landscape according to elevation. The 

tops of the peaks were colored white to represent snow and greens and browns 

colored everything below. A flight path through the region was created and 

frames for the animation were created, but it was obvious the colors weren’t 

quite right. The colors created were not the same as “natural” greens and 

browns. Also, the data values representing elevation don’t necessarily 

correspond to the location of natural objects like snow fields, rock faces, tree 

growth and water. In order to produce the desired effect, the landscape needs to 

be painted with a much more natural color palette.

4.2.1 Laying an Image over a Landscape

After considering a number of approaches to generating a natural color palette, I 

realized that a much simpler solution would be to “borrow” the coloring from real 

photographic imagery. The first part of the solution to this problem is to lay such 

an image over a surface. The Readlmage module will currently import rgb, TIFF 

and gif images, allowing it to import the composite image created to cover the 

landscape. Once again, it is critical that the dimensions of the image and the 

landscape are identical. This makes laying the image over the surface possible



www.manaraa.com

36

with the use of the Replace module which replaces a specific data field in one 

object with that of another.

4.2.2 Creating Input Layers

The ability to lay an image over the top of the surface opened the door for 

“custom” landscape coloring. The key to creating a realistic landscape is to base 

the overlay image on as many of the natural features as possible. The Glacier 

Park overlay was based on the hydrology, elevation and actual pictures of the 

region. The hydrology was obtained from the USGS DLG (Digital Line Graph) 

data which includes marshes, swamps, lakes, rivers and glaciers. The conv 

utility was used to import the DLG into the Data Explorer Environment. The DEM 

in Figure 4.2 provided the elevation data and was used to identify peaks, slopes, 

benches and saddles. After the layers were verified in DX, they were exported 

as TIFF images.

Figure 4.2 Range of DEM values
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The hydrology image was edited with the image utility xv [Bradly94] to remove 

the marshes and swamps and clean up the image as illustrated in Figure 4.3.

Figure 4.3 Hydrology Image Layer
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The DEM image was converted to raw data using the tifftoraw converter from 

the PBMPLUS Toolkit then it was converted to a histogram gif image by the 

drun [Lammers92] raw data imaging package. The histogram, illustrated by 

Figure 4.4, of the DEM provided a guide when it came time to paint the 

landscape with the real colors of the land.

Figure 4.4 DEM Histogram Image

Pictures of Glacier Park were scanned using a Hewlit Packard ScanJet [HP94] 

flatbed scanner and the Photoshop [Adobe94] plug-in. The pictures included 

images from the shores of Lake MacDonald and multiple view points from the 

Going to the Sun road. More images were captured from a video recording of a 

real plane flight over the watershed using the VideoVision Studio hardware and 

Premier. The video included segments of glaciers, trees, rock formations and 

Lake MacDonald.
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All of these image sources were imported as layers into Photoshop. The stamp 

tool creates a copy of a region of an image and lets the users stamp it into 

another image. The desired result is a single image which represents the natural 

coverage of the landscape including trees, grass, water, rock and snow. The 

regions defined by the hydrology layer were colored with samples of the water in 

the real pictures. The forested hill sides were colored with samples of tree 

stands and the rock and glacier regions were colored with samples of the rock 

and snow. The coverage image is illustrated by Figure 4.5.
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Figure 4.5 Final Cover Image
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4.3 Starting with Reality

Although the reality achieved during the previous spiral pass was very effective 

in setting the context of the Glacier Watershed region, I realized that the 

experience could be improved through the use of more real images. If the user 

can start with a real image of Lake MacDonald and then pass into the virtual 

world of the data visualization we would have a very sound and complete 

product.

4.3.1 “Transmorgification”

The final phase to completing the visual portion of the Glacier movie required a 

modification of the flight path from the previous result in order to match it’s 

beginning location to that of a real image taken from the shore of Lake 

MacDonald, and shown in Figure 4.6.

Figure 4.6 Lake MacDonald Image
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The initial section of the animation is generated using Premier’s transition and 

morph tools. These tools create the smooth transition series of frames from the 

real image to the new first frame of the frames generated by the DX fly-through.
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Conclusions

5.1 Conclusions

I have successfully described the pipeline for producing data visual-animations. 

The tools and methods have been described, identified and presented in the 

form of action flow charts as illustrated in Figure 5.1. I’ve shown through the 

process of natural discovery set in the cast of the spiral model the evolution of a 

product which fills a previously vacant niche.

The methods and tools described in this paper have been used to create data 

visualization-animation following products; The Hydrogen Atom: an exploration 

of the inner workings of the hydrogen atom; The Rabbit Hills Flv-Bv: an

exploration of surface and subsurface features of the Rabbit Hills oil field for the 

DOE Petroleum Reservoir Characterization Project; The Lake MacDonald 

Glacier Flv-Bv: a context setting flying tour of the Lake MacDonald watershed 

for the Columbia River Basin Project. These products range from MPEG 

movies to QuickTime movies on CDROM and video. All of these examples can 

be seen on a demo video [DASL95] and multimedia CDROM [ITRC95].
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Figure 5.1 The Final Pipeline
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5.2 What does the future hold

5.1.1 Real Time Control

Real time control of the flight path through the virtual landscape is a common 

request. There are some problems associated with extending to real time 

control.

• Real Time Calculation of Splines

We can certainly calculate splines dynamically given user “influenced” control 

points. The control point locations could be modified using keyboard controls or 

a joystick. The spline to fit the control points can be calculated using the current 

position, current trajectory, and two control points assuming the slope at the first 

control point is set to be parallel to the line segment connecting the current 

position and the final control point.

• Real Time Rendering

Rendering images given a dynamic flight path is another story, due to the 

extreme CPU and memory intensive aspects of rendering. There are a number 

of limiting factors including CPU speed, size of data set and I/O performance. 

Though there are special purpose real time rendering computers available (e.g. 

Silicon Graphic Inc.’s “Reality Engine”), these are analogous in price and use to 

special purpose supercomputers. For most workstation users, real time 

rendering is likely to be beyond reach for some time. For example, the rendering 

of the frames for the Glacier example took 18 hours on an RS/6000 25T 

workstation with 256MB of memory.



www.manaraa.com

45

• Pre-Rendering

Even with a reduction in acceptable resolution and the landscape size, we would 

need a machine with extremely high computing and storage performance. Is it 

possible that we could pre-render a limited subset of the available data set 

space?

One possible solution is QuickTimeVR. A QuickTimeVR object, once rendered, 

gives the user the ability to negotiate with two degrees of freedom (rotational and 

tilt up/down) in a region of interest. In addition, the user can be given the ability 

to move from one region of interest to another with the “appearance” of choice. 

Each region of interest is compiled as a single QuickTimeVR object and they are 

linked together using “hot-spots”. A QuickTimeVR object is created using a 

series of still images encompassing the full range of motion at the desired object.

Another possibility is a VRML (Virtual Reality Modeling Language) object which 

is created like the QuickTimeVR object, but allows the user to access the object 

over the World Wide Web with any VRML capable browser, e.g. Netscape 

Navigator [Netscape95] with the Topper [Kinetix96] plug-in.
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